PED Energy System

Renée Heller, Professor Energy & Innovation Amsterdam University of Applied Sciences

AmsTErdam BiLbao cltizen drivEn smaRt cities

9th December 2021

30000

Overview

Introduction

- What is a Positive Energy District?
- PED Goals
- Energy System
- Components
- Boundary
- Flexibility
- Demand, Supply and Temporal Resolution
- Renewable Energy Options
- Energy System Choices
- Technology Choices

What is a Positive Energy District?

- Energy-efficient and energy-flexible urban areas
- Produce net zero greenhouse gas emissions
- Actively manage an annual local or regional surplus of renewable energy
- Interaction between buildings, the users and the regional energy, mobility and ICT systems
- Securing a good life for all in line with social, economic and environmental sustainability

PED Goals

Achieving a **Positive Energy Balance** is one of many goals for PEDs.

PEDs provide a political push to move districts into a more sustainable direction, increasing energy efficiency, increasing building performance, addressing resource waste and reducing CO_2 -emissions. Helping to deliver on national renewable energy targets and supporting the energy transition.

PED Energy System Components

Business as Usual

Energy efficiency (EE) is not new – Energy Performance of Buildings Directive (2002).

Technologies to achieve EE are well established.

Well established renewable energy system technologies (e.g. Solar PV) with positive business case.

What's new about PEDs?

Area focus + Integration + Flexibility + Social Dimension

PED System Boundary

Virtual component to all PEDs through smart-grid connection

PEDs require dynamic exchanges with regional energy systems.

Energy autonomy is not the goal.

Energy Flexibility & Why It's Important

Renewable Energy Systems (RES) can be very weather dependent (e.g. Solar, Wind) Flexibility addresses RES intermittency and mis-match of demand and supply Influence of load density and diversity – e.g. Residential vs. Office

- Thermal Energy Storage (TES)
 e.g. Aquifer Thermal Energy Storage,
 boiler vessel
- Electric Storage
 e.g. Batteries, Electro-mobility
- User Flexibility
- Control Systems
 e.g. Demand Side Management (DSM)

Energy System Boundary Supply: What is included?

Traditionally only "Building Bound" energy demand sources:

- Space Heating, Cooling ٠
- Hot Water
- Auxiliary Power / Lighting
- Energy flexibility opportunities from building user energy and e-mobility are not considered
- Embodied energy and the associated emissions are not included.
- Hourly balance can have fossil fuel input at some moments

Renewable Energy Options Spacial Boundaries

- Building/On-site Boundary e.g. Rooftop or Building Integrated Systems
- Local Boundary e.g. Self-Owned or Community Systems within PED Boundary (Geographic or Virtual)
- Off-site Boundary e.g. Virtual Power Purchase Agreement (PPA)
- External Boundary e.g. Green Retail Tariffs / Renewable Energy Certificates? – Not considered as an option for PEDs

🔁 alelier

Energy System Choices

What choices need to be made & why?

New Build	Building Typology	Energy Demand Investigation	Renewable Energy Sources Available	Optimisation of Demand & Supply
Retrofit	Load Density	Business As Usual (BAU)	Electrical or Thermal RES Delivered	Design Criteria
Design Standards	Load Diversity	Availability & Accuracy of Data	Collective System or per Building?	Investment Costs

+ Innovation

Renewable Energy Sources

Cooling	Heating (LT/MT)	Heating (HT)	Electricity
 Heat pump District cooling Air Conditioner/ chiller Direct cooling: water and air 	 Heat pump Solar thermal Geothermal Waste heat 	 Biomass Geothermal Waste heat 	 Grid (partly RE) PV Wind Hydro Biomass Geothermal

Storage / flexibility option

Cooling	Heating (LT/MT/ HT)	Electricity	Flexibility
• ATES • Water vessel	• ATES • Water vessel • PCM • Boiler vessel • Molten Salt	 Stationay Battery Car battery Flow battery Fly wheel 	 Demand side management Smart grids Smart charging

Conclusions

- To achieve Europe's 2050 decarbonization challenge, a transformation of the urban systems is required.
- Positive Energy Districts (PEDs) have the potential of accelerating the decarbonization of urban areas and promoting scalability between cities.
- High ambition levels are needed to meet this challenge.

atelier

[4] https://www.nepia.com/2050-longer-term-targets/